skip to main content


Search for: All records

Creators/Authors contains: "Wainwright, P. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Whether it is swimming, walking, eating, or jumping, motions are a fundamental way in which organisms interact with their environment. Understanding how morphology contributes to motion is a primary focus of kinematic research and is necessary for gaining insights into the evolution of functional systems. However, an element that is largely missing from traditional analyses of motion is the spatial context in which they occur. We explore an application of geometric morphometrics (GM) for analyzing and comparing motions to evaluate the outputs of biomechanical linkage models. We focus on a common model for oral jaw mechanics of perciform fishes, the fourbar linkage, using GM to summarize motion as a trajectory of shape change. Two traits derived from trajectories capture the total kinesis generated by a linkage (trajectory length) and the kinematic asynchrony (KA) of its mobile components (trajectory nonlinearity). Oral jaw fourbar data from two subfamilies of Malagasy cichlids were used to generate form–function landscapes, describing broad features of kinematic diversity. Our results suggest that kinesis and KA have complex relationships with fourbar morphology, each displaying a pattern in which different shapes possess equivalent kinematic trait values, known as many-to-one mapping of form-to-function. Additionally, we highlight the observation that KA captures temporal differences in the activation of motion components, a feature of kinesis that has long been appreciated but was difficult to measure. The methods used here to study fourbar linkages can also be applied to more complex biomechanical models and broadly to motions of live organisms. We suggest that they provide a suitable alternative to traditional approaches for evaluating linkage function and kinematics. 
    more » « less
  2. Abstract

    Evolutionary comparisons between major environmental divides, such as between marine and freshwater systems, can reveal the fundamental processes governing diversification dynamics. Although processes may differ due to the different scales of their biogeographic barriers, freshwater and marine environments nevertheless offer similar opportunities for diversification in benthic, demersal, and pelagic habitats. Here, we compare the evolutionary patterns and processes shaping teleost diversity in each of these three habitats and between marine and freshwater systems. Using specimens from the National Museum of Natural History, we developed a data set of linear measurements capturing body shape in 2266 freshwater and 3344 marine teleost species. With a novel comparative approach, we contrast the primary axis of morphological diversification in each habitat with the major axis defined by phylogenetic signal. By comparing angles between these axes, we find that fish in corresponding habitats have more similar primary axes of morphological diversity than would be expected by chance, but that different historical processes underlie these parallel patterns in freshwater and marine environments. Marine diversification is more strongly aligned with phylogenetic signal and shows a trend toward lineages occupying separate regions of morphospace. In contrast, ecological signal appears to be a strong driver of diversification in freshwater lineages through repeated morphological evolution in densely packed regions of morphospace. In spite of these divergent histories, our findings reveal that habitat has driven convergent patterns of evolutionary diversification on a global scale. [Benthic–pelagic axis; body shape; convergent evolution; morphological diversification; phylogenetic signal.]

     
    more » « less
  3. Abstract

    We present a dataset that quantifies body shape in three dimensions across the teleost phylogeny. Built by a team of researchers measuring easy-to-identify, functionally relevant traits on specimens at the Smithsonian National Museum of Natural History it contains data on 16,609 specimens from 6144 species across 394 families. Using phylogenetic comparative methods to analyze the dataset we describe the teleostean body shape morphospace and identify families with extraordinary rates of morphological evolution. Using log shape ratios, our preferred method of body-size correction, revealed that fish width is the primary axis of morphological evolution across teleosts, describing a continuum from narrow-bodied laterally compressed flatfishes to wide-bodied dorsoventrally flattened anglerfishes. Elongation is the secondary axis of morphological variation and occurs within the more narrow-bodied forms. This result highlights the importance of collecting shape on three dimensions when working across teleosts. Our analyses also uncovered the fastest rates of shape evolution within a clade formed by notothenioids and scorpaeniforms, which primarily thrive in cold waters and/or have benthic habits, along with freshwater elephantfishes, which as their name suggests, have a novel head and body shape. This unprecedented dataset of teleostean body shapes will enable the investigation of the factors that regulate shape diversification. Biomechanical principles, which relate body shape to performance and ecology, are one promising avenue for future research.

     
    more » « less